Партнерская программа
Поиск вакансии
   
Здесь могла быть Ваша реклама
Накрутка лайков, подписчиков, групп, друзей, репостов, фолловеров - бесплатно
   
Конкурс "Поделись с друзьями"


Вакансия: Data Scientist (Risk-Based Pricing) Citi Fuel (ООО Staff Atlantic)
Работодатель: Citi Fuel (ООО Staff Atlantic)
Обновлено: 03.10.2025 17:25:31
Регион: Ташкент
Опыт работы: От 3 до 6 лет
Оплата: ЗП не указана
Тип занятости: Полная занятость
Описание:

About the Project
Fuel card sales in the U.S. (all sales are conducted within the United States).
Project launch: March 2024.
Part of a logistics group: The project is a division of a U.S. trucking logistics group, which is the market leader in Uzbekistan.
The company is a registered IT Park resident with offices in Tashkent (two offices), Chicago, and Orlando.


Purpose of the Role
The main goal of this role is to design and implement a set of risk-based pricing models that determine individual fuel discounts ($/gallon) for customers based on 20–30 financial, behavioral, and industry-related factors. Models should cover new, existing, and churn-risk clients, with a clear business impact evaluation.

Key Responsibilities

  • Analyze and clean large historical datasets (2–3 GB in Excel format).

  • Design and implement multiple pricing models tailored to different client categories.

  • Perform feature engineering and variable selection (20–30 features: finance, behavior, industry, etc.).

  • Train and calibrate models using algorithms such as LightGBM, XGBoost, Logistic Regression.

  • Build explainable models with SHAP, feature importance, and other interpretability tools.

  • Develop a framework for business-effect evaluation (uplift, sensitivity analysis).

  • Prepare models for use by the finance department and potential automation via API.

  • Document hypotheses, model logic, feature selection, and interpretations.

  • Provide recommendations for deployment (batch scoring, API integration, model updating).

  • Plan quarterly model recalibration and monitoring.

Requirements

  • 3–5+ years of hands-on experience in Data Science or Applied Machine Learning.

  • Proven expertise in scoring, risk, or pricing models.

  • Strong Python skills (pandas, scikit-learn, XGBoost/LightGBM).

  • Experience in feature engineering and explainable modeling (e.g., SHAP).

  • Understanding of pricing logic, discounting mechanisms, and sensitivity analysis.

  • Ability to work with large Excel datasets and extract insights.

  • Strong independence in managing the full cycle: from analysis to implementation recommendations.

Nice to Have

  • Background in fintech, e-commerce, or dynamic pricing systems.

  • Experience deploying ML models (FastAPI, Docker, MLflow).

  • Knowledge of scorecard model development.

  • Experience with visualization tools (Plotly, Streamlit).

Technologies & Tools

  • Python (pandas, scikit-learn, XGBoost, LightGBM, SHAP)

  • Excel, Jupyter, SQL (optional)

  • MLflow, Streamlit (when needed)

  • FastAPI (for production deployment if required)

What We Offer

  • Competitive compensation (discussed individually based on competencies).

  • Direct access to company leadership – your expertise and ideas will be valued.

  • 5/2 schedule following the U.S. production calendar for holidays and weekends.

  • Working hours: 18:00–02:00 (Tashkent time).

  • Office-based position in Tashkent.

Контактная информация доступна авторизованным пользователям









Убедительно обращаем Ваше внимание на то, что вся информация, размещенная на данном интернет-сайте, носит сугубо информационный характер и не являются публичной офертой, определяемой положениями Статьи 437 (2) ГК РФ. Для получения точной информации о стоимости товаров, пожалуйста, обращайтесь в ближайший офис продаж.


Разработано в АЛЬФА Системс